Книга Интерстеллар: наука за кадром - Кип С. Торн
Шрифт:
Интервал:
Закладка:
Рис. 8.7. Гравитационная праща вокруг дыры средней массы, на фоне Гаргантюа, вид с «Рейнджера» (Моя модель.)
На верхнем изображении Гаргантюа находится на заднем плане относительно проходящей перед ней черной дыры средней массы, которая захватывает лучи света, идущие от далеких звезд в направлении Гаргантюа, разворачивает их вокруг себя и выбрасывает в сторону камеры. Отсюда кольцо звездного света, которое окружает тень дыры средней массы. Хоть эта дыра и в тысячу раз меньше Гаргантюа, она находится гораздо ближе к «Рейнджеру» и потому не выглядит маленькой.
По мере того как дыра средней массы движется направо (с точки зрения камеры «Рейнджера», выполняющего гравитационный маневр), она загораживает первичное изображение тени Гаргантюа и проецирует перед собой вторичное изображение этой тени. Эти два изображения полностью аналогичны первичным и вторичным изображениям звезд при гравитационном линзировании, но теперь это тень Гаргантюа, которую линзирует дыра средней массы. На нижнем кадре вторичная тень уменьшается в размере, поскольку дыра средней массы движется дальше. На этот момент гравитационная праща практически завершена, и находящаяся на борту «Рейнджера» камера направлена к планете Миллер.
Жаль, но увидеть такое можно, лишь находясь поблизости от обеих черных дыр, а не с огромного удаления, на котором находится Земля. Для земных астрономов самые впечатляющие проявления черных дыр – это вырывающиеся из них джеты, а также свет от дисков горячего газа, движущегося по орбитам вокруг дыр. Об этом мы сейчас и поговорим.
Большая часть объектов, наблюдаемых с помощью радиотелескопа, – это огромные – гораздо больше любой звезды – газовые облака. Однако в начале шестидесятых астрономы обнаружили при радиообзоре несколько крохотных объектов. Их назвали квазарами (от quasi-stellar radio sources – «похожие на звезды источники радиоизлучения»).
В 1962 году Мартен Шмидт, астроном из Калтеха, пользуясь самым большим в мире оптическим телескопом на горе Паломар, зафиксировал свет, исходящий от квазара под названием 3C273. Это напоминало яркую звезду, из которой бьет едва заметная струя – джет (рис. 9.1). Нечто из ряда вон!
Рис. 9.1. Сверху: фотография 3C273, сделанная космическим телескопом «Хаббл» NASA. Звезда (в левом верхнем углу) выглядит такой большой из-за переэкспонирования, сделанного, чтобы был виден джет (в нижнем правом углу). В действительности же она столь мала, что определить ее размер невозможно. Снизу: спектральные линии излучения от 3C273 (верхняя полоса) в сравнении со спектральными линиями водорода, полученными в земной лаборатории. Три спектральные линии квазара соответствуют трем линиям водорода (Hβ, Ηγ и Ηδ), но с длиной волн, увеличенной на 16 процентов (Это негатив: черные спектральные линии на самом деле белые.)
Когда Шмидт разложил излучение 3C273 на цветовые составляющие (примерно так, как это происходит, если пропустить луч света через призму), он увидел набор спектральных линий (снизу на рис. 9.1). На первый взгляд они были совершенно не похожи на какие-либо спектральные линии, виденные им прежде. Однако в феврале 1963 года, спустя несколько месяцев исследований, Шмидт понял, что эти линии казались ему необычными лишь потому, что длина их волн на 16 процентов превышала норму. Это называется эффектом Доплера, а возник он из-за движения квазара в направлении от Земли со скоростью, составляющей 16 процентов от скорости света – приблизительно c/6. Но чем вызвано такое сверхбыстрое перемещение? Самым вменяемым объяснением, пришедшим Шмидту на ум, было расширение Вселенной.
По мере расширения Вселенной далекие от Земли объекты движутся прочь от нас с большими скоростями, а объекты, которые находятся ближе, движутся медленнее. Огромная скорость 3C273 (одна шестая от скорости света) означает, что 3C273 удален от Земли на два миллиарда световых лет; это самый далекий из зафиксированных на тот момент объектов. На основе этого расстояния и яркости квазара Шмидт сделал вывод, что 3C273 отдает энергии в четыре триллиона раз больше, чем Солнце, и в сто раз больше, чем самые яркие галактики!
Период колебаний этой удивительной энергии был совсем невелик – около одного месяца, а значит, большая часть света должна была исходить от объекта столь маленького, что луч света мог бы пройти от одного его конца до другого за один месяц, а это гораздо меньше, чем расстояние от Земли до ближайшей к нам звезды – проксимы Центавра. Причем периоды колебаний некоторых других почти столь же мощных квазаров составляли лишь несколько часов, и, стало быть, размером они были немногим больше Солнечной системы. Энергия в сотню раз выше энергии излучения яркой галактики, исходящая из области размером с Солнечную систему, – это было что-то исключительное!
Но как из столь маленькой области может исходить так много энергии? Если взять фундаментальные силы природы, то вариантов три: химическая энергия, ядерная энергия или гравитационная энергия.
Химическая энергия – это энергия, которая высвобождается, когда молекулы соединяются, образуя молекулы другого вида. Пример – горение бензина, в процессе которого молекулы бензина соединяются с молекулами атмосферного кислорода, результатом чего является вода, диоксид углерода и много тепла. Однако энергии, которая при этом выделяется, для нашего случая очень-очень мало.
Ядерная энергия высвобождается, когда ядра атомов соединяются, образуя новые ядра. Примеры – атомная бомба, водородная бомба, а также горение ядерного топлива внутри звезды. Хотя энергии при этом может выделяться гораздо больше, чем при химических реакциях (представьте себе разницу между канистрой бензина и ядерной бомбой), астрофизики не видят возможностей, позволяющих квазарам подпитываться ядерной энергией, и этот вариант тоже отпадает. Остается только гравитационная энергия, та самая, которая помогала «Эндюранс» совершать маневры вблизи Гаргантюа. В случае «Эндюранс» эта энергия использовалась во время гравитационной пращи вокруг черной дыры средней массы (см. главу 7). Ключевой момент здесь – сильная гравитация черной дыры. Соответственно, мощность квазара тоже должна обеспечиваться черной дырой.
В течение нескольких лет астрофизики пытались разобраться, как это возможно. Ответ был найден в 1969 году Дональдом Линден-Беллом из Гринвичской королевской обсерватории в Англии. Квазар, как предположил Линден-Белл, – это гигантская черная дыра, окруженная диском раскаленного газа (аккреционным диском), который пронизан магнитным полем (рис. 9.2).